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Invasive Plant Researchers Should Calculate
Effect Sizes, Not P-Values

Matthew J. Rinella and Jeremy J. James*

Null hypothesis significance testing (NHST) forms the backbone of statistical inference in invasive plant science.

Over 95% of research articles in Invasive Plant Science and Management report NHST results such as P-values or

statistics closely related to P-values such as least significant differences. Unfortunately, NHST results are less

informative than their ubiquity implies. P-values are hard to interpret and are regularly misinterpreted. Also, P-

values do not provide estimates of the magnitudes and uncertainties of studied effects, and these effect size estimates

are what invasive plant scientists care about most. In this paper, we reanalyze four datasets (two of our own and two

of our colleagues; studies put forth as examples in this paper are used with permission of their authors) to illustrate

limitations of NHST. The re-analyses are used to build a case for confidence intervals as preferable alternatives to P-

values. Confidence intervals indicate effect sizes, and compared to P-values, confidence intervals provide more

complete, intuitively appealing information on what data do/do not indicate.
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P-values …, after being widely seeded by statisticians, are
now well established in the wild, and often appear as
pernicious weeds rather than a useful crop (comment by I.
M. Wilson in Nelder 1999).
Contrary to common dogma, tests of statistical null
hypotheses have relatively little utility in science and are
not a fundamental aspect of the scientific method
(Anderson et al. 2000).
… p values are neither objective nor credible measures of
evidence in statistical significance testing. Moreover, the
authenticity of many published studies with p , .05
findings must be called into question. Rather than the
preoccupation with p values … the goal … should be the
estimation of sample statistics, effect sizes and the confidence
intervals (CIs) surrounding them (Hubbard and Lindsay
2008).

Null hypothesis significance testing (NHST) is very
widely used in invasive plant science. Of the papers in
Invasive Plant Science and Management that present data
amenable to NHST, over 95% report NHST results such as
P-values or statistics closely related to P-values such as least
significant differences. Despite its widespread use, NHST
has serious practical limitations. For one thing, P-values are
hard to interpret and often are misinterpreted. Also, P-
values do not answer the two questions invasive plant
scientists care about most: (1) What is the magnitude of the
treatment effect? and (2) With what level of precision did
the study estimate the treatment effect? Over the past half
century, these and other limitations have prompted harsh
critique of NHST from scientists in virtually every field that
analyzes data (see 402 citations at http://welcome.warnercnr.
colostate.edu/,anderson/thompson1.html), with critics in
ecology and allied disciplines growing increasingly adamant
over the past decade (Anderson et al. 2000; Fidler et al.
2006; Martinez-Abrain 2007, and many others).

This paper advocates for confidence intervals as alterna-
tives to NHST. We begin with a brief review of NHST and
confidence intervals. Then, we address the following four
points in the course of illustrating advantages of confidence
intervals over NHST: (1) Nonsignificant statistical tests are
not evidence for null hypotheses; (2) Effect sizes are
uncertain, even when statistical tests are significant; (3)
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Significance thresholds are arbitrary; and (4) One minus the
P-value is not the probability the alternative hypothesis is
true. To illustrate these points, we reanalyzed four published
datasets from the plant science literature (two of our own
and two of our colleagues’). We fit the same or very similar
models that the authors originally fit, but instead of P-values,
we present confidence intervals on effect sizes. For example,
in some cases we present confidence intervals on effect size 5
treatment 2 control.

Null Hypothesis Significance Testing and

Confidence Intervals

Consider a hypothetical experiment designed to evaluate
the effect of a weed control treatment on desired species
productivity. The hypothetical treated and untreated plots
were arranged in a completely randomized design. An
expression for the data is:

yi~b0zb1xizei ½1�

where yi is desired plant biomass (g m22) in plot i, xi equals
0 if plot i was not treated and 1 if plot i was treated, and ei

is normally distributed random error. Equation 1 can be
thought of as a simple ANOVA model. With this scenario
for the xi values, b0 represents the mean of untreated plots
and b1 describes the effect of treatment. As is typical in
invasive plant science, the hypothetical authors conduct a
point null hypothesis test of b1 5 0; i.e., weed control had
no effect. The authors use the F-test to calculate a P-value,
which has the following interpretation: Pr (observed data or
data more extreme| b1 5 0). In other words, a P-value is the
probability of witnessing the observed data, or data more
extreme, given that b1 5 0. If this probability is lower than
some threshold statistical significance level (e.g., 0.05), the
authors will conclude that the null hypothesis is unlikely in
light of the data; i.e., they will reject the null hypothesis that
b1 5 0. It is important to comprehend what the P-value is
not. It is not the probability that b1 5 0.

An increasing number of authors avoid P-values and
instead use confidence intervals to describe the range of
likely values of parameters such as b1 (e.g., Nickerson 2000;
Stephens et al. 2007). Strictly defined, a 95% confidence
interval is one realization of a procedure (collect data,
calculate interval) that has a 95% success rate at bracketing
the true parameter value (Berry and Lindgren 1996). (The
interpretations for other confidence intervals such as 50%,
68%, etc. are analogous.) The reason for the complicated
interpretation of confidence intervals is that parameters are
not viewed as random variables in classical statistics; a
confidence interval either brackets a parameter or it does
not. Many researchers and statisticians employ an
alternative interpretation of confidence intervals; they
interpret 95% confidence intervals simply as having a
0.95 probability of bracketing the true parameter value.

Although not technically correct, this interpretation is
sometimes acceptable because it is the correct interpretation
for Bayesian confidence intervals, and Bayesian and
classical confidence intervals are identical under particular
sets of assumptions/conditions. Specifically, Bayesian and
classical confidence intervals for normally distributed data
are identical when a particular noninformative Bayesian
prior distribution is used (p. 355, Gelman et al. 2004). We
present several 50 and 95% confidence intervals in this
paper, and given the noninformative priors we used, it is
acceptable to view these intervals as having a 0.50 and 0.95
probability of bracketing the parameter.

Nonsignificant Statistical Tests Are Not Evidence for

Null Hypotheses

Failing to reject a null hypothesis (large P-value) does
not suggest the null hypotheses is true or even approxi-
mately true (Fisher 1929). We reanalyzed one of our
published datasets to illustrate this point.

To evaluate the ability of plant groups to repel weed
invasions, James et al. (2008) sowed medusahead (Tae-
niatherum caput-medusae (L.) Nevski) seeds in plots after
removing either (1) nothing, (2) annual forbs, (3) perennial
forbs, or (4) bunchgrasses. The authors tested null
hypotheses that weed densities did not differ between
treatments, and instituted Bonferonni corrections to
maintain an experiment-wise error rate of 5%. The null
hypothesis was rejected only for bunchgrasses and it was
concluded that ‘‘Bunchgrasses were the only functional
group that inhibited T. caput-medusae establishment.’’

On one hand, James et al. (2008) are to be congratulated
for reporting dispersion statistics (i.e., standard errors), a
practice advocated by many (e.g., Anderson et al. 2001;
Nagele 2001) (Figure 1). On the other hand, the large
standard errors were clearly ignored in blithely concluding
forb removals had no effect. Instead, it is far more likely
that every removal treatment had some effect, and that
measurement error and small sample size prevented the
authors from detecting these effects. Many authors believe
it is practically impossible for treatments to have no effect
to an infinite number of decimal points (i.e., a true point
null hypothesis) (e.g., Cohen 1994; Kirk 1996; Tukey
1991; but see Guthery et al. 2001). In a reanalysis, we
calculated confidence intervals for the treatment effects
(Figure 1). For Figure 1 to support the no effect of forb
removal conclusion there would need to be extremely
narrow confidence intervals centered on the 0 line in place
of the wide confidence intervals for forbs. Like the
significance tests from the original analysis, the forb
confidence intervals do not rule out a lack of effect because
they overlap 0. But in addition to 0, the confidence
intervals encompass a wide range of values, indicating
possibly large effects.
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The mistake of construing fail-to-reject decisions as
evidence for null hypotheses is pervasive in invasive plant
science. Consider these examples from the literature: (1)
‘‘yellow starthistle plant density did not differ from the
untreated control in plots treated with imazapic;’’ (2)
‘‘Mowing had no effect on either B. ischaemum or other

dominant species at either site…;’’ (3) ‘‘Grazing did not
increase or decrease density of mature leafy spurge
stems…;’’ (4) ‘‘Burning at tiller emergence did not affect
smooth brome…’’ These examples could be easily
developed into management recommendations. Misinter-
preting significance tests not only misdirects science, it
misdirects management. De-emphasizing P-values and
instead focusing on confidence intervals would limit the
potential for misinterpretation.

Effect Sizes Are Uncertain, Even When Statistical

Tests Are Significant

When authors detect treatment effects (e.g., P # 0.05),
they often erroneously assert that the effect size precisely
equals the difference between means (e.g., treatment 2
control) or the ratio of means (e.g., treatment / control).
Here are examples from the literature: (1) ‘‘chaining + fire
treatments reduced juniper cover from 32% to ,6%;’’ (2)
‘‘grazing decreased vegetative stem density from 104 … to
20 stems m22;’’ (3) ‘‘CO2 enrichment increased mass of
cotyledons, leaves, and total aboveground plant material by
33% to 35%;’’ and (4) ‘‘defoliation reduced … densities
… 55% (below) nontreated controls.’’ There can be large
discrepancies between estimated and actual effect sizes, and
we reanalyzed data from Rinella et al. (2001) to illustrate
this point.

In Rinella et al. (2001), we measured spotted knapweed
(Centaurea stoebe L., synonym C. maculosa auct. non Lam.)
densities after applying mowing treatments. After rejecting
the null hypothesis of no effect of mowing (P # 0.05), we
concluded (based on sample means) that: ‘‘Fall mowing
decreased adult (knapweed) density 85 and 83% below that
of the control at Sites 1 and 2, respectively.’’ In retrospect,
the recklessness of this statement is striking. For one thing,
given the high spatial variability of the study areas, the
probability is essentially 0 that mean knapweed densities in
mowed and nonmowed plots were equivalent prior to
treatment. So for a given site, the probability is roughly 0.5
that nonmowed plots contained more knapweed plants
than fall-mowed plots merely due to sampling variability.
Furthermore, in addition to sampling variability, there was
a high potential for measurement error; imagine multiple
observers counting tightly clumped plants.

In a reanalysis, we calculated confidence intervals for the
fall mowing effects, and unlike the original analysis we
analyzed the data on the percent scale (i.e., effect size 5
2100 3 [1 2 mowed/ nonmowed]) (Figure 2). These
intervals are asymmetric because they involve a ratio of
normally distributed treatment means. Had the intervals of
Figure 2 been reported in Rinella et al. (2001), we would
not have reported the 85% point estimate as if it were
precisely correct. Instead, we would have reached the more
logical conclusion that fall mowing likely reduced weed

Figure 1. (A) Data and results of analysis from James et al. (2008).
Medusahead densities (mean + SE, n 5 8) resulting from
treatments that sowed the weed after imposing plant group
removal treatments. The authors tested all of the means against
each other, and letters indicate significant differences (P , 0.05).
(B) Confidence intervals (50% [bars] and 95% [lines]) resulting
from a reanalysis of the James et al. (2008) data. Confidence
intervals estimate effect size of treatment that removed plant groups
(i.e., effect size 5 plant group removed 2 nothing removed).
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density somewhere between 22 and 96%. Unfortunately,
the 85% estimate was published in a widely distributed
Extension publication. These kinds of mistakes could be
avoided if invasive plant scientists used confidence intervals
instead of P-values.

Invasive plant-infested lands are highly variable, both
spatially and temporally, and invasive plant studies often
suffer perilously small sample sizes because of constraints
on land, labor, and other resources. Therefore, point
estimates of effect sizes are of questionable value in invasive
plant science, even when effects are deemed statistically
significant. Our statistical reporting should characterize
uncertainty about parameter values.

Significance Thresholds Are Arbitrary

Significance thresholds (e.g., P # 0.05) are arbitrary in
the sense that small changes to thresholds and to measured
variables can cause dramatic changes to conclusions. We
reanalyze two published datasets to illustrate this point.

Heitschmidt and Vermeire (2006) applied drought and
irrigation treatments and measured biomass production of
perennial cool-season grasses in invasive annual grass-
infested rangeland. After failing to reject the null
hypothesis of no effect at the P # 0.05 threshold, the
authors concluded that production was ‘‘similar among
treatments.’’ Figure 3 shows 50 and 95% confidence
intervals for the difference between the two most extreme
treatments (i.e., effect size 5 moderate drought with
irrigation 2 severe drought without irrigation). The 95%
confidence interval barely overlaps 0, which indicates the

treatment difference is not significant at the P # 0.05 level
(Figure 3). However, adding just 1.0 kg ha21 to just one
data point renders the difference significant. Given the size
of the author’s sampling frames (0.025 m2), 1.0 kg ha21

corresponds to a few blades of grass. So had a few
additional grass blades been collected, the authors would
have concluded (implicitly or explicitly) that irrigation
increased cool-season perennial grass by 285% (97 vs.
273 kg ha21) rather than concluding production was
‘‘similar among treatments.’’ We can be certain this would
have been the author’s conclusion because they concluded
the following regarding another treatment that was
significant: ‘‘irrigation increased warm-season perennial
grass production by 251%.’’ It is curious that just a few
blades of grass would arbitrate between such sharply
contrasting conclusions (i.e., 0 vs. 285%). Had a
confidence interval been used, Heitschmidt and Vermeire
(2006) would have been compelled to settle on a range of
plausible conclusions/hypotheses.

To further explore results from Heitschmidt and
Vermeire (2006), we calculated the counternull value
(Rosenthal and Rubin 1994). The counternull value
corresponds to the effect size that is equally as likely as
the null hypothesis value. The counternull serves as a
reminder that alternative hypotheses can be more likely
than the null hypothesis, even when there is a failure to
reject the null. For the hypothesis of no effect of
Heitschmidt and Vermeire (2006) discussed above, the
counternull value is approximately 350 kg ha21 (Figure 3).
Therefore, the author’s conclusion of no effect of irrigation,
and the conclusion that irrigation increased cool-season
grasses 350 kg ha21 are equally plausible. In northern
mixed-grass prairie where the study was conducted,
350 kg ha21 is a considerable quantity of biomass. Because
of the shape of the normal distribution, values between 0

Figure 2. Reanalysis of data from Rinella et al. (2001).
Confidence intervals (50% [bars] and 95% [lines]) estimate
effect size based on ratio of treatment means (i.e., effect size 5

2100 3 [1 2 mowed / nonmowed]).

Figure 3. Reanalysis of data from Heitschmidt and Vermeire
(2006). Confidence intervals (50% [bars] and 95% [lines]) and
counternull value describing effect size of irrigation treatment on
cool-season perennial grass production (i.e., effect size 5

irrigated 2 nonirrigated). There is equal evidence for the
counternull value and the null hypothesis of 0 effect.
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and 350 are more plausible than either 0 or 350 and the
most likely value is in the center of the confidence interval
(i.e., 175).

As another example, consider data from Bates (2005)
evaluating effects of cattle grazing on several plant groups
after cutting juniper (Juniperus occidentalis Hook.) plants.
Based on nonsignificant tests at the 5% level, it was
concluded that ‘‘Canopy cover … did not differ between
not-grazed cut and grazed cut treatments in any year of the
study.’’

We used data from the last year of the study to compute
confidence intervals on the grazing effect for large perennial
grasses and perennial forbs (Figure 4). P-values calculated
from the confidence intervals were 0.06 for large perennial
grasses and 0.09 for perennial forbs. These small P-values
cast serious doubt on the conclusion that ‘‘Grazing in the
cut treatment did not limit herbaceous recovery.’’
Furthermore, simple calculations illustrate the grazing
effects might have been quite severe. The least squares
parameter estimate for perennial grasses is 21%, and
according to the mean of ungrazed plots, perennial grass
cover was 3.6%. Therefore a 21% change would imply
that grazing reduced grasses by 100 3 (1 2 (3.6 2 1)/3.6)
5 38%. The same calculation for perennial forbs yields a
decrease of 57%. Significance thresholds often lull
researchers into believing treatments have little or no
effect. When correctly interpreted, confidence intervals do
not suffer this limitation.

Invasive plant scientists should refrain from hinging
important conclusions on P 5 0.04 vs. P 5 0.06, or
similarly small differences in P. P-values promote dichot-
omous conclusions (e.g., grazing is/is not deleterious) based
on arbitrary cutoffs, whereas confidence intervals compel
analysts to consider the range of conclusions their data do/
do not support (e.g., the grazing effect was somewhere
between trivial and highly deleterious). And it is not only

small changes in measurements that push P-values slightly
above or below significance thresholds; modeling assump-
tions can do the same thing. Whether or not an effect is
significant (P # 0.05) often comes down to modeling
choices such as which covariates to include, whether or not
a factor is considered fixed or random, or whether or not
covariances among measurements are assumed to be 0.
Compared to NHST, conclusions based on confidence
intervals are more robust to changes in modeling
assumptions. Often, modest changes to models induce
only modest changes in confidence intervals; the basic
message behind the data often remains unaltered. Con-
versely, when significance cutoffs are used, slightly altering
the model can push the P-value above or below the cutoff,
which dramatically changes the message behind the data.

One Minus the P-value is Not the Probability the

Alternative Hypothesis is True

We showed previously that large P-values are routinely
misconstrued as evidence for null hypotheses. It is even
more common to construe small P-values as evidence for
alternative hypotheses, and this too can be a mistake. A P-
value is strictly the probability of observed or more extreme
data, given a true null hypothesis: P(observed or more
extreme data| null hypothesis). A small P-value indicates
the data are improbable if the null hypothesis is true. But
this is not how P-values are generally interpreted in invasive
plant science. Instead, as statisticians Berger and Sellke
(1987) note, ‘‘most nonspecialists interpret (P-values)
precisely as P(hypothesis| data).’’ That is, in invasive plant
science one minus the P-value is often erroneously
interpreted as the probability the alternative hypothesis is
true. The probability the hypothesis is true clearly is what
scientists want, but in using P-values they settle for a
tangentially related probability. It is worth noting that the
probability that a hypothesis is true is only calculable via
Bayes formula.

P-value ? P(hypothesis| data) is not merely an esoteric
inequality between two conditional probabilities. When the
left hand probability is small, researchers routinely infer
that the right hand probability, the probability of interest,
must also be small; this is a mistake Falk and Greenbaum
(1995) labeled ‘‘the illusion of attaining improbability.’’
This mistake would not be very damaging if the two
probabilities were guaranteed to be somewhat similar, but
they are not. See Cohen (1994) for a simple example of a
large discrepancy between a P-value and the probability of
a null hypothesis, and see Berger and Sellke (1987) for a
dramatic example involving normal means where a P-value
of 0.05 corresponds to P(null hypothesis| data) 5 0.52.
Similar examples of P-values distorting evidence against
null hypotheses are not rare, and they derive from both a
Bayesian (e.g., Diamond and Forrester 1983; Robert 2001)

Figure 4. Reanalysis of data from Bates (2005). Confidence
intervals (50% [bars] and 95% [lines]) describing effect size of
grazing treatment on plant cover (i.e., effect size 5 grazed cover
2 not-grazed cover).
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and frequentist, or Neyman-Pearson, perspective (Sellke et
al. 2001). Discrepancies between P-values and probabilities
of hypotheses led Berger and Berry (1988) to question the
validity of conclusions drawn from moderately small P-
values. Moreover, these discrepancies prompted Hubbard
and Lindsay (2008) to conclude that ‘‘P values are an
inadequate measure of evidence.’’

This is not to imply that P-values always give different
answers than P(hypothesis| data). For example, the 95%
confidence intervals of this paper do not overlap the null
hypothesis values when the P-values are less than 0.05 (also
see Casella and Berger 1987). However, it is disconcerting
to find that P-values are not a reliable source of evidence
for all common testing problems (Hubbard and Lindsay
2008).

Concluding Remarks

The advantages of confidence intervals over NHST
extend beyond interpreting results from individual studies.
Confidence intervals promote what is often termed meta-
analytic thinking; i.e., accumulation of evidence over
multiple studies (Cumming and Finch 2001). Consider a
collection of similar studies on a treatment with P , 0.05
reported for roughly half and P . 0.05 for the remainder.
Based on P-values alone, it might be concluded that the
studies are utterly inconclusive. But if confidence intervals
were reported and each interval bracketed a similar range of
values, although roughly half the intervals overlapped 0 in
the lower tail (i.e., half were statistically nonsignificant),
this would provide compelling evidence that the treatment
had a consistent effect. Many authors have argued this and
similar points (e.g., Fidler et al. 2006; Nakagawa and
Cuthill 2007). Given the low power and imprecision (i.e.,
large error variances and small sample sizes) of many
invasive plant studies, it seems we should base our
understanding on data from multiple studies. This is what
synthesis papers seek to do (e.g., D’Antonio et al. 1999),
and confidence intervals are more appropriate for this cause
than P-values.

In many cases, confidence intervals are easy to calculate.
For example, when an effect is regulated by one regression
coefficient, the confidence interval on the coefficient is all
that is needed, and regression packages provide this interval
automatically. Things become a little trickier when the
confidence interval of interest involves multiple, correlated
regression coefficients, but most statistics packages handle
this situation as well via the Working-Hotelling procedure,
delta method, or other procedures (Neter et al. 1996; SAS
1999). Many manuscripts provide help in computing and
interpreting confidence intervals (e.g., Cumming and
Finch 2001; Nakagawa and Cuthill 2007).

Invasive plant scientists work hard to design unbiased
studies and gather reliable data. But in the end, too many

hard-won datasets get distilled down to a dichotomous
conclusion (i.e., effect/no effect). These binary conclusions
promote confusion and information loss. Invasive plant
scientists should use interval estimates to illustrate evidence
for the range of conclusions their data support.

Literature Cited

Anderson, D. R., K. P. Burnham, and W. L. Thompson. 2000. Null
hypothesis testing: problems, prevalence and an alternative. J. Wildl.
Manag. 64:912–923.

Anderson, D. R., W. A. Link, D. H. Johnson, and K. P. Burnham.
2001. Suggestions for presenting the results of data analysis. J. Wildl.
Manag. 65:373–378.

Bates, J. D. 2005. Herbaceous response to cattle grazing follow-
ing juniper cutting in Oregon. Rangeland Ecol. Manag. 58:
225–233.

Berger, J. O. and D. A. Berry. 1988. Statistical analysis and the illusion
of objectivity. Am. Sci. 76:159–165.

Berger, J. O. and T. Sellke. 1987. Testing a point null hypothesis: the
irreconcilability of P values and evidence. J. Am. Statistical Assoc. 82:
112–122.

Berry, D. A. and B. W. Lindgren. 1996. Statistics, Theory and Methods.
Belmont, CA: Wadsworth. 702 p.

Casella, G. and R. L. Berger. 1987. Reconciling Bayesian and frequentist
evidence in the one-sided testing problem (with comments). J. Am.
Statistical Assoc. 82:106–139.

Cohen, J. 1994. The earth is round (p , .05). Am. Psychologist 49:
997–1003.

Cumming, G. and S. Finch. 2001. A primer on the understanding, use,
and calculation of confidence intervals that are based on central and
noncentral distributions. Educ. Psychol. Meas. 61:532–574.

D’Antonio, C. M. and Levine, J. M. 1999. Elton revisited: a review of
evidence linking diversity and invasibility. Oikos 87:15–26.

Diamond, G. A. and J. S. Forrester. 1983. Clinical trials and statistical
verdicts: probable grounds for appeal. Ann. Internal Med. 98:
385–394.

Falk, R. and C. W. Greenbaum. 1995. Significance tests die hard. The
amazing persistence of a probabilistic misconception. Theory Psychol.
5:75–98.

Fidler, F., M. A. Burgman, G. Cumming, R. Buttrose, and N.
Thomason. 2006. Impact of criticism of null-hypothesis significance
testing on statistical reporting practices in conservation biology.
Conserv. Biol. 20:1539–1544.

Fisher, R. A. 1929. The statistical method in psychical research. Proc.
Soc. Psychical Res. 39:189–192.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 2004.
Bayesian data analysis. Boca Raton, FL.: Chapman & Hall/CRC.
668 p.

Guthery, F. S., J. J. Lusk, and M. J. Peterson. 2001. The fall of null
hypothesis: liabilities and opportunities. J. Wildl. Manag. 65:
379–384.

Heitschmidt, R. K. and L. T. Vermeire. 2006. Can abundant summer
precipitation counter losses in herbage production caused by spring
drought. Rangeland Ecol. Manag. 59:392–399.

Hubbard, R. and R. M. Lindsay. 2008. Why P values are not a useful
measure of evidence in statistical significance testing. Theory Psychol.
18:69–88.

James, J. J., K. W. Davies, R. L. Sheley, and Z. T. Aanderud. 2008.
Linking nitrogen partitioning and species abundance to invasion
resistance in the Great Basin. Oecologia 156:637–648.

Kirk, R. E. 1996. Practical significance: a concept whose time has come.
Educ. Psych. Meas. 56:741–745.

Rinella and James: Effect size statistics N 111



Martinez-Abrain, A. 2007. Are there any differences? A non-sensical
question in ecology. Acta Ecol. Int. J. Ecol. 32:203–206.

Nagele, P. 2001. Misuse of standard error of the mean (SEM) when
reporting variability of a sample. A critical evaluation of four
anaesthesia journals. Br. J. Anaesth. 90:514–516.

Nakagawa, S. and I. C. Cuthill. 2007. Effect size, confidence interval
and statistical significance: a practical guide for biologists. Biol. Rev.
82:591–605.

Nelder, J. A. 1999. From statistics to statistical science. The Statistician
48:257–269.

Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. 1996.
Applied linear statistical models. New York: Irwin. 1408 p.

Nickerson, R. S. 2000. Null hypothesis significance testing: a review
of an old and continuing controversy. Psych. Methods 5:241–
301.

Rinella, M. J., J. S. Jacobs, R. L. Sheley, and J. J. Borkowski. 2001.
Spotted knapweed response to season and frequency of mowing. J.
Range Manag. 54:52–56.

Robert, C. P. 2001. The Bayesian Choice. Paris, France: Springer. 604 p.
Rosenthal, R. and D. B. Rubin. 1994. The counternull value of an effect

size. Psychol. Sci. 5:329–334.
SAS. 1999. Statistical software. Version 8.0. Cary, NC: SAS Institute.
Sellke, T., M. J. Bayarri, and J. O. Berger. 2001. Calibration of p values

for testing precise null hypotheses. Am. Statistician 55:62–71.
Stephens, P. A., S. W. Buskirk, and C. Martinez del Rio. 2007.

Inferences in ecology and evolution. Trends Ecol. Evol. 22:192–197.
Tukey, J. W. 1991. The philosophy of multiple comparisons. Statistical

Sci. 6:100–116.

Received May 27, 2009, and and approved January 28, 2010.

112 N Invasive Plant Science and Management 3, April–June 2010




